Inferring the evolutionary history of IncP-1 plasmids despite incongruence among backbone gene trees.
نویسندگان
چکیده
Plasmids of the incompatibility group IncP-1 can transfer and replicate in many genera of the Proteobacteria. They are composed of backbone genes that encode a variety of essential functions and accessory genes that have implications for human health and environmental remediation. Although it is well understood that the accessory genes are transferred horizontally between plasmids, recent studies have also provided examples of recombination in the backbone genes of IncP-1 plasmids. As a consequence, phylogeny estimation based on backbone genes is expected to produce conflicting gene tree topologies. The main goal of this study was therefore to infer the evolutionary history of IncP-1 plasmids in the presence of both vertical and horizontal gene transfer. This was achieved by quantifying the incongruence among gene trees and attributing it to known causes such as 1) phylogenetic uncertainty, 2) coalescent stochasticity, and 3) horizontal inheritance. Topologies of gene trees exhibited more incongruence than could be attributed to phylogenetic uncertainty alone. Species-tree estimation using a Bayesian framework that takes coalescent stochasticity into account was well supported, but it differed slightly from the maximum-likelihood tree estimated by concatenation of backbone genes. After removal of the gene that demonstrated a signal of intergroup recombination, the concatenated tree was congruent with the species-tree estimate, which itself was robust to inclusion/exclusion of the recombinant gene. Thus, in spite of horizontal gene exchange both within and among IncP-1 subgroups, the backbone genome of these IncP-1 plasmids retains a detectable vertical evolutionary history.
منابع مشابه
The IncP-1 plasmid backbone adapts to different host bacterial species and evolves through homologous recombination
Plasmids are important members of the bacterial mobile gene pool, and are among the most important contributors to horizontal gene transfer between bacteria. They typically harbour a wide spectrum of host beneficial traits, such as antibiotic resistance, inserted into their backbones. Although these inserted elements have drawn considerable interest, evolutionary information about the plasmid b...
متن کاملDiversification of broad host range plasmids correlates with the presence of antibiotic resistance genes.
The IncP-1ε subgroup is a recently identified phylogenetic clade within IncP-1 plasmids, which plays an important role in the spread of antibiotic resistance and degradation of xenobiotic pollutants. Here, four IncP-1ε plasmids were exogenously captured from a petroleum-contaminated habitat in China and compared phylogenetically and genomically with previously reported IncP-1ε and other IncP-1 ...
متن کاملEfficient inference of bacterial strain trees from genome-scale multilocus data
MOTIVATION In bacterial evolution, inferring a strain tree, which is the evolutionary history of different strains of the same bacterium, plays a major role in analyzing and understanding the evolution of strongly isolated populations, population divergence and various evolutionary events, such as horizontal gene transfer and homologous recombination. Inferring a strain tree from multilocus dat...
متن کاملThe complete sequences of plasmids pB2 and pB3 provide evidence for a recent ancestor of the IncP-1beta group without any accessory genes.
The nucleotide sequences of the broad-host-range antibiotic resistance plasmids pB2 (61 kb) and pB3 (56 kb), which were isolated from a wastewater treatment plant, were determined and analysed. Both have a nearly identical IncP-1beta backbone, which diverged early from the sequenced IncP-1beta plasmids R751, pB10, pJP4, pADP1 and pUO1. In contrast to the latter plasmids, the pB2 and pB3 backbon...
متن کاملGenomic and functional analysis of the IncP-9 naphthalene-catabolic plasmid NAH7 and its transposon Tn4655 suggests catabolic gene spread by a tyrosine recombinase.
The naphthalene-catabolic (nah) genes on the incompatibility group P-9 (IncP-9) self-transmissible plasmid NAH7 from Pseudomonas putida G7 are some of the most extensively characterized genetic determinants for bacterial aerobic catabolism of aromatic hydrocarbons. In contrast to the detailed studies of its catabolic cascade and enzymatic functions, the biological characteristics of plasmid NAH...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 30 1 شماره
صفحات -
تاریخ انتشار 2013